Tight Bounds for Graph Problems in Insertion Streams
نویسندگان
چکیده
Despite the large amount of work on solving graph problems in the data stream model, there do not exist tight space bounds for almost any of them, even in a stream with only edge insertions. For example, for testing connectivity, the upper bound is O(n logn) bits, while the lower bound is only Ω(n) bits. We remedy this situation by providing the first tight Ω(n logn) space lower bounds for randomized algorithms which succeed with constant probability in a stream of edge insertions for a number of graph problems. Our lower bounds apply to testing bipartiteness, connectivity, cycle-freeness, whether a graph is Eulerian, planarity, H-minor freeness, finding a minimum spanning tree of a connected graph, and testing if the diameter of a sparse graph is constant. We also give the first Ω(nk logn) space lower bounds for deterministic algorithms for k-edge connectivity and k-vertex connectivity; these are optimal in light of known deterministic upper bounds (for k-vertex connectivity we also need to allow edge duplications, which known upper bounds allow). Finally, we give an Ω(n log2 n) lower bound for randomized algorithms approximating the minimum cut up to a constant factor with constant probability in a graph with integer weights between 1 and n, presented as a stream of insertions and deletions to its edges. This lower bound also holds for cut sparsifiers, and gives the first separation of maintaining a sparsifier in the data stream model versus the offline model. 1998 ACM Subject Classification F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY
منابع مشابه
Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملMore inequalities for Laplacian indices by way of majorization
The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...
متن کاملTight Bounds for Linear Sketches of Approximate Matchings
We resolve the space complexity of linear sketches for approximating the maximum matching problem in dynamic graph streams where the stream may include both edge insertion and deletion. Specifically, we show that for any ǫ > 0, there exists a one-pass streaming algorithm, which only maintains a linear sketch of size Õ(n) bits and recovers an n-approximate maximum matching in dynamic graph strea...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملData Streams with Bounded Deletions
Two prevalent models in the data stream literature are the insertion-only and turnstile models. Unfortunately, many important streaming problems require a Θ(log(n)) multiplicative factor more space for turnstile streams than for insertion-only streams. This complexity gap often arises because the underlying frequency vector f is very close to 0, after accounting for all insertions and deletions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015